
ROS-LLM: A ROS framework for embodied AI with
task feedback and structured reasoning

Christopher E. Mower1, Yuhui Wan12, Hongzhan Yu1, Antoine Grosnit13,
Jonas Gonzalez-Billandon1, Matthieu Zimmer1, Jinlong Wang4, Xinyu Zhang4, Yao Zhao5,

Anbang Zhai5, Puze Liu3, Davide Tateo3, Cesar Cadena6, Marco Hutter6, Jan Peters3,
Guangjian Tian7, Yuzheng Zhuang8, Kun Shao1, Xingyue Quan8, Jianye Hao8,

Jun Wang9, Haitham Bou-Ammar19

Abstract

We present a framework for intuitive robot programming by non-experts, leveraging
natural language prompts and contextual information from the Robot Operating
System (ROS). Our system integrates large language models (LLMs), enabling
non-experts to articulate task requirements to the system through a chat interface.
Key features of the framework include: integration of ROS with an AI agent con-
nected to a plethora of open-source and commercial LLMs, automatic extraction of
a behavior from the LLM output and execution of ROS actions/services, support for
three behavior modes (sequence, behavior tree, state machine), imitation learning
for adding new robot actions to the library of possible actions, and LLM reflec-
tion via human and environment feedback. Extensive experiments validate the
framework, showcasing robustness, scalability, and versatility in diverse scenarios,
including long-horizon tasks, tabletop rearrangements, and remote supervisory
control. To facilitate the adoption of our framework and support the reproduc-
tion of our results, we have made our code open-source. You can access it at:
ROS-LLM-Code.

1 Introduction

When developing a robotic system, whether it be in industry or research, typically roboticists follow
a similar development cycle, that we summarize in Figure 1. Initially, a task is conceptualized, for
example “make me a coffee”. Formally, we will refer to such a task for the robot as an action. In our
case, we assume actions from domestic scenarios, however, the action could be inspired by any other
application (e.g. healthcare, construction, space).

The conceptualized task, or action, is broken down into several sub-tasks, e.g. “reach”, “pick”,
“switch”, etc. Throughout this paper, we refer to these sub-tasks as atomic actions since a complete
action, such as “make me coffee”, comprises several components within a larger sequence or
combination of sub-tasks. For each atomic action, a low-level policy representation can be obtained
using common approaches such as: reinforcement learning (RL), imitation learning, or optimal

1Huawei Noah’s Ark Lab, London, UK
2University of Leeds, Leeds, UK
3Technical University of Darmstadt, Darmstadt, Germany
4East China Normal University, Shanghai, China
5Huawei Technologies, Hangzhou, China
6ETH Zurich, Zurich, Switzerland
7Huawei Noah’s Ark Lab, Hong Kong, China
8Huawei Noah’s Ark Lab, Shenzhen, China
9University College London, London, UK

https://github.com/huawei-noah/HEBO/tree/master/ROSLLM

Action

sequence

State

machine

Behavior

tree

∅

→
? ?

Conceptualize task

Decompose atomic actions

Curate atomic action library

Behavior generation

DeploymentTask

specification

non-expert

Figure 1: Overview of a typical robotics development workflow.

control (e.g. model-predictive control). Note that, in our case, atomic actions can also include
perception sequences (e.g. “locate mug”).

As we conceptualize more tasks, we subsequently develop more and more atomic actions that we can
curate in a library. Each atomic action is ultimately a function: an input variable and parameters that
are mapped to a return value. The representation of an atomic action could be simple, for instance,
“open gripper” that sends an “open” signal to a parallel gripper attached to a robot arm which then
returns the final width from the gripper. The representation could take other forms, for example a
planner and feedback controller, a neural network policy trained using RL or imitation learning for
the end-effector that feeds into an inverse-kinematic controller to compute target joint states. The
planner/controller parameters for a given formulation or the neural network weights can be stored in
memory and considered as the atomic action representation in the atomic action library. This library
of atomic actions can be in the form of a code API or, if the Robot Operating System (ROS) is being
used, the library can be a list of ROS actions and services. Textual descriptions for each atomic action
are always assumed to be provided, i.e. documentation.

A library of atomic actions is collected and maintained by experts: such as the robot manufacturer
(e.g. KUKA, ABB, Clearpath) or companies providing integration services (e.g. Covariant, Berkshire
Grey, PickNik Robotics). Interestingly, the robot system can perform unseen tasks by combining
some atomic actions. Those novel tasks would typically be specified to the manufacturer/integrator
by non-expert customers. Common behavior representations are sequences of atomic actions, state
machines, or behavior trees. Given a combination of atomic actions in one of these form, the robot
system can then be deployed. We note that, despite this library of atomic actions, teams of expert
robot engineers often need to manually develop and deploy the proper combination of atomic actions.

The approach shown in Figure 1 and described above has proven effective in many applications such
as manufacturing, logistics, and inspection, e.g. [21, 10]. These applications where robotics have been
successfully applied generally involve repetitive situations. Furthermore, these scenarios typically
involve task specifications that are unlikely to change frequently. For instance, a vehicle manufacturer
shall probably not alter their process once the production line is set up and operational. However, if
a new behavior or action is needed for the system, revising or rewriting the system workflow will
require the work a team of expert robotics engineers.

The development and adoption of robotics in applications such as domestic use, healthcare, and
construction has been slower than in the applications mentioned above. This can be explained by the
challenges needed to address such as frequently changing and time-dependent task specifications,
interaction and collaboration with non-experts, and the need to extend the range of capabilities of the

2

system via input from non-experts. For these reasons, it is unreasonable to assume teams of experts
(expensive in time and money) will be on-hand to update the capabilities of the system at will and
within reasonable time limits.

In general, robot systems are designed in a modular way to allow users to build their own frameworks
by easily integrating and modifying existing processes. The most well-known framework used in
research and industry is the Robot Operating System (ROS) [41, 32]. Other examples include the
Lightweight Communications and Marshaling (LCM) project [16] and the Open Robot Control
Software (Orocos) project [5]. The ROS framework provides a well-established ecosystem of
packages and libraries that are ready to use and integrated with many common robot systems (e.g.
Universal Robots, Robotiq, Clearpath Robotics). Some of most widely used ROS libraries and
packages include the TF library [11], MoveIt [9], and the Navigation-stack. The ROS ecosystem
of contributors additionally contains many packages for many important requirements such as
simulation [26, 34], kinematic modeling [47, 2], and planning and control [19, 36, 8]. Thus, ROS
offers many packages providing useful functionalities for both research and commercial applications.
These packages include valuable data structures, control interfaces, inverse kinematics (IK) and
motion planning tools, perception utilities, and various visualizers. Additionally, with new tools such
as the BehaviorTree.ROS library, ROS actions and services enable the generalization of a wide
variety of capabilities required by robot systems into a unified execution framework.

In our work, we aim to provide a framework that addresses the needs and limitations described above.
We argue that a key bottleneck in the current robot development workflow is the reliance on teams of
robot experts. Therefore, our goal is to develop a system that enables non-experts to program robots,
i.e. provide the robot with new action compositions and extend the capabilities of the system through
demonstration. Given its popularity and the general need for modularity, we integrate our framework
with ROS.

Many advancements have been made in robotics and machine learning. Notably, the field of AI has
made significant advances recently in natural language processing, due primarily to the development
of transformer models [53] and subsequently large language models [39, 13, 50]. These language
models have been shown to exhibit remarkable performance across a broad spectrum of tasks such
as generating code [7], solving advanced mathematics problems [12, 51], generating valid chain-of-
thoughts [56, 52], providing search results [24], assisting in medical diagnosis [46], and others.

Language is a natural tool humans use daily to communicate their goals to one another. With recent
advancements in language models, there is increasing interest in using these models to map natural
language to a sequence of robot actions. By expressing task requirements in natural language and
providing contextual information retrieved from the robot’s environment, non-experts can effectively
convey their intentions to robotic systems.

Leveraging natural language, our method generates behavior representations tailored to the task
specified by a non-expert user, thereby alleviating the burden on expert engineers and enabling rapid
prototyping and deployment of robotic systems.

Moreover, since a language model will likely not be capable enough to replace a team of experts,
our framework enables continuous learning and adaptation, facilitated by iterative feedback loops.
Also, in-order to enable non-experts to update the library of atomic actions via imitation learning, we
develop an interface for them to provide several demonstrations. Through teleoperation or kinesthetic
teaching, users can augment the system’s atomic action library with skills, enriching its repertoire of
behaviors. The human feedback provides the system with the ability to correct its past mistakes and
to modify task objectives.

In this paper, we make the following contributions.

• Introduction of a framework that enables non-experts to intuitively program robots using
natural language prompts and contextual information retrieved from a ROS environment (i.e.
mapping sensor readings to text).

• Integration of an open-source language model with a comprehensive atomic action library,
facilitating the composition of action sequences for complex long-horizon tasks that are
adaptive to dynamic environments and human feedback.

3

• Development of a real-world robot setup within a kitchen-like environment and performing
various experiments that provide important lessons on prompting strategies to improve the
performance of open-source language models.

• Demonstration of the system in handling diverse scenarios, showcasing its robustness and
versatility in human-robot collaboration, along with the provision of key insights for using
open-source LLMs in robotics applications. Furthermore, we perform a long-distance
supervisory control user-study where an operator in Europe controls a robot in Asia to
perform a tabletop rearrangement task. Additionally, we describe two use-cases of our
system being developed/deployed in systems in the wild.

2 Problem formulation

As described in the introduction, we can think of an atomic action as a single task that the system can
perform. Formally, we frame a single task as a Markov Decision Process (MDP) characterized by the
tuple ⟨S,A, r,P, γ⟩ where S is the state space, A is the action space, r : S × A → R is a reward
function defined for any state s ∈ S and any action a ∈ A, P(st+1|st, at) is a transition probability
distribution, t is a discrete time step, and the scalar 0 < γ ≤ 1 is a discount factor.

In contrast, to the standard MDP formulation, we also assume access to a failure flag f that is returned
on termination of the MDP, i.e. task completion. The failure flag indicates whether the desired task
was completed successfully or not, i.e. f = 0 indicates success, f = 1 otherwise. For example, if the
task is for a robot arm to reach to a target, then at termination f = 0 means the target was acquired,
and f = 1 implies that the robot finished in a configuration far from the target. Thus, our modified
MDP is denoted by ⟨S,A, r, f,P, γ⟩.
In single-task RL, an AI agent generally learns a policy µ(a|o) choosing an action a given an
observation o (e.g. from an image) of the state s. The agent’s objective is to determine the sequence
of actions that maximizes the expected return E [

∑
t γ

tr(st, at)]. The specific task and its associated
rewards are determined by the reward function r. In our case, we assume access to an atomic action
library that corresponds to having a set of N pre-trained or pre-defined policies {µ̂i}Ni=1 ready to
use, each based on an underlying modified MDP. Note, we use hat µ̂ to denote that the policy is
trained/defined.

Humans exhibit remarkable proficiency in synthesizing complex behaviors by composing various
known skills. With regard to a robotic system, this process involves the composition of distinct
policies that are executed following a certain structure, such as some appropriate sequential order, or
corresponding to a data structure like a behavior tree. In situations when there is access to a team of
experts, it is reasonable to assume that they are capable to define some reward function that measures
appropriate compositions of atomic actions, i.e. behaviors. With access to experts, we can reasonably
assume some reward or fitness function that specifies an appropriate composition of these policies, in
which case we could explore methods based on hierarchical reinforcement learning [1]. However, in
our case, absent expert guidance, the robotic system must rely on environmental observations o and
non-expert human input h to guide policy selection. Also, we assume the input from the human is
given by text.

Assuming that an appropriate data representation (e.g. a sequence or a tree) has been selected, it
denotes a specific configuration of atomic action composition by b and terms this as a behavior. For
example, in the case of a sequence, given an atomic action library with N = 3 policies, we could
choose b = {3, 1, 2, 1} meaning we should start executing policy µ̂3 first, then µ̂1, µ̂2, and finally µ̂1.
As mentioned above, this choice of composition b is based on the observation o and human input h.
Thus, we define the mapping π(b|o, h) as a behavior policy - this is our AI agent.

When a behavior b is chosen by the behavior policy π, it may be the case that one of these policies
fails or all may succeed. In the case of failure, it is typically not worthwhile to proceed. For example,
if a robot reaches to grab a mug but knocks it over when attempting to grasp due to misalignment,
then it would not make sense to continue to try to place the mug. Thus, in this case, we consider that
the result of the behavior b is given by f̄ = 1. When all the atomic actions complete successfully,
then the result of the behavior b is f̄ = 0. Note, the bar f̄ indicates the failure result of the behavior
time step τ . Another way to conceptualize this idea is that the final atomic action failure flag is given
as the failure flag of the behavior b.

4

To enhance the selection of optimal behaviors b and improve the behavior policy π, the agent requires
access to a measure of goodness. As previously noted, we refrain from relying on domain experts to
formulate new reward functions tailored to specific tasks. Under our premise, where access to a failure
indicator f is assumed, a clear definition is needed. In our current work, we adopt the simplifying
assumption that the failure indicator can be hard-coded. For instance, during the execution of the
“grasp object” atomic action, the final gripper width serves as an indicator: zero width implies failure
to grasp the object, while a width greater than zero indicates success. This approach is constrained by
the reliance on straightforward rules or expert input to establish the failure indicator. Recent work,
however, suggest promise in training neural networks to classify multimodal failures in manipulation
tasks [20]. Of interest in our future work is to explore the use of multi-modal transformer networks
(e.g. vision-language models) to model the failure indicator f . Ideally, therefore, the agent should
choose b to maximize success and also minimize time. Since, by assumption, we have access to the
failure flags f̂ we define for the behavior policy π a return function

Rπ := E
[∑

τ

−βτ
(
1 + f̂τ

)]
(1)

where τ is a time step for the behavior policy π, and 0 < β ≤ 1 is a scalar discount factor. Notice
that we add 1 to the the failure flag f̂τ . This is required to indicate to the agent that as few atomic
actions should be used to construct a behavior as possible. Our goal in this work, is to develop a
framework that is capable of integrating with real systems that addresses the above novel formulation.

3 The ROS-LLM Framework

In this section, we provide an overview of our framework, highlighting specific design considerations
tailored to the integration of embodied AI in robotics. We show on Figure 2 an illustrative summary
of the proposed framework.

3.1 Atomic action library

In both industrial and research settings, the development of robotic tasks often involves breaking
down complex behaviors into simpleratomic actions. For instance, it is possible to complete a
longer-horizon task such as pick-and-place by breaking it down into (i) acquire target, (ii) reach, (iii)
grasp, (iv) acquire new target, (v) reach, and (vi) place. While atomic actions commonly include
physical movements, such as reaching or grasping, they can also include perceptual tasks like object
detection or localization. Over time, a repertoire of tasks expands and the resulting library of atomic
actions can facilitate the reusability of robotic behaviors. While an initial set of these actions can be
initially provided, it is unlikely to cover all potential tasks. Therefore, our system includes a facility
allowing non-expert users to add extra atomic actions to the library via imitation learning (see Section
3.6 for further details).

In our framework, we integrate the concept of atomic actions with ROS and implement each atomic
action as either a ROS action or a ROS service. Additionally, for each action or service within
the library, we provide a textual description to convey its intended functionality and usage. This
information is stored in a JSON file with the following fields: ‘name‘ of the ROS action/service,
‘type‘ that specifies if the atomic action is a ROS action or ROS service, ‘description’ of the
atomic action and its input/output. We also designed tools, exposed in the ROS environment, to
readily retrieve the action library description in the form of a readable string that can be exposed to
the LLM through prompting. These atomic actions can then be combined and orchestrated by the
LLM agent to execute complex behaviors.

In addition, we provide functionality for the atomic action library, which is described by a code API
that interfaces with the system. In this case, the JSON field ‘type’ is given the value ‘code’, and
the behavior output from the language model can be an executable Python script. Note that in this
case, it is possible to have an action library combining ROS actions, ROS services, and a code API.
However, the output of the language model is restricted to executable Python scripts.

5

Imitation learning

Teleoperation
Kinesthetic

teaching

Non-expert

Expert
Prompt

CoT/Few-shot

Action library description

Environment observation

Task description

Human-feedback

Atomic action library

Policy

representation

Textual

description

Deployment

Sensors

AI Agent

LLM interface Policy

Figure 2: Our proposed ROS-LLM framework overview illustrates the integration of several com-
ponents. In this figure, the dashed lines denote elements that are only introduced once, such as the
initial version of the atomic action library and CoT/Few-shot prompts by an expert.

3.2 Environment observation

In our framework, we operate under the assumption that the robot has access to various sensors
capable of observing changes in the environment. These sensors provide valuable information
about the state of the surroundings, which is essential for the robot to make informed decisions and
adapt its behavior accordingly. Given that our agent is a language model, we require environmental
observations to be represented in textual form to serve as input to the model.

To facilitate this process, we implement a ROS package called the ‘observation_manager’. This
package implements tools that are responsible for querying multiple sensors and gathering textual
observations of the environment. Upon initialization, a ROS node is configured with a list of services
to call whenever an observation is needed. This modular design allows a user of our framework to
customize the set of sensors they want to use based on their specific application requirements.

To set up our framework, we require users to implement these services that map observations from
sensors to textual representations. For instance, a service may output descriptions such as “the
gripper is open” or “the blue box is detected in the camera view”. By standardizing the format of
environmental observations as text, we promote modularity and interoperability within the framework.

3.3 Human non-expert interface

We provide a chat-based interface to our framework to allow easy adoption from non-expert human
users. Each environment step is executed after the human feedback is received from the interface,
and then once the execution is over on the system (ending either with a success or a failure), we ask
the human to input a new textual entry. At the beginning, we let the system interpret the first human
input as the task description. The task description should outline the goal or objective to assign to the
robot, providing context for the subsequent actions to generate. Thereafter, the system treats human
input prompts as a feedback, which may contain suggestions for corrective behavior or suggestions
for alternative approaches for the robot to complete the task.

Another potential interaction mode could be via speech, which would have the potential to be even
more intuitive for non-experts. We actually plan to implement a microphone into our setup and use
an off-the-shelf audio-to-text package for parsing the input. This functionality will be incorporated
into our main code-base in the future.

6

3.4 Prompt generation

The prompt provided to the language model serves as input to generate behavior representations that
can be executed on the system. At each environment step τ , the prompt is updated, ensuring that
the language model receives the latest information necessary for decision-making. We show in the
central part of Figure 2 the different elements that we expect in a prompt to shape the behavior of the
system.

The prompt includes a task description that is provided by the user, as described in the previous
sub-section. After the first environment step τ , the non-expert provides feedback that the system uses
to correct its behavior. A description of the atomic action library is also included to provide context on
the admissible behaviors of the system, as described in Section 3.1. Moreover, the prompt contains an
observation of the environment that is collected by mapping several sensor readings to text. Several
well-known prompt engineering strategies are utilized to aid the language model construct a behavior
for the system, namely chain-of-thought and few-shot prompting. These additional portions of the
prompt are assumed to be given as part of all observations o. Finally, some additional notes are
written in the prompt, such as how the language model should format the behavior output (e.g. Python
or XML).

Overall, the prompt generation process gathers information from both the ROS environment and
the human interface, ensuring that the language model receives comprehensive input to guide its
decision-making process. Once the prompt is constructed, it is then passed to the language model.
We consider the output of the language model to represent the desired behavior for the system. We
describe next the different formatting options for the output of the language model.

3.5 Behavior representation

We call a behavior the combination of atomic actions that is extracted from the textual output of the
language model. To represent a behavior, the LLM generates either a Python or XML code. When
Python format is used, a Python terminal exposed to the ROS environment executes the LLM output.
In the case of XML, the LLM response is interpreted as a behavior tree1. We use regular expressions
to easily identify parse LLM output that should encapsulate the code into ‘‘‘python...’’’,
‘‘‘json...’’’, or ‘‘‘xml...’’’.

Python output We expect the use of Python code when the action library is a set of Python function
that exposes the various functionality of the system. The library can also contain ROS actions and
ROS services that can be interfaced with the script.

JSON output When the JSON format is used, a behavior representation called an action sequence
is used. In this case, the specified actions in the sequence are executed one after the other, and we
expect each action to be a ROS service of the type rosllm_srvs/AtomicAction. This service
returns a string called output and takes as input one string argument called input, which takes input
per action, and another string argument prev_output, which is the output from the previous action.

XML output A behavior tree, represented by XML code, is a hierarchical model that describes
the behavior of autonomous agents or robots. It consists of nodes that define specific actions or
conditions, and it is organized in a tree-like structure. At the root of the tree, the behavior selector
node determines the order in which to evaluate and execute child nodes. These child nodes can include
sequences of nodes, which execute their child nodes sequentially until one fails, or parallel nodes,
which execute their child nodes simultaneously. Other types of nodes include conditional nodes,
action nodes, and decorator nodes, each serving distinct roles in controlling the agent’s behavior. In
this case, the language model is tasked with producing the XML code defining a behavior tree.

3.6 Updating the atomic action library via imitation learning

In our framework, the atomic action library may not encompass all the tasks that non-expert users
want to realize. To address this limitation, we provide a mechanism for non-experts to update the

1The behavior tree interface has recently been added to the code base. We plan in the future to run experiments
and report the results in an updated version of this article.

7

action library using imitation learning techniques. This section details our approach to integrating
imitation learning into our framework and describes the process of updating the action library through
kinesthetic teaching or teleoperation.

As a first step, we integrate to our framework a connection to dynamic movement primitives (DMP),
which is a widely-used technique requiring a minimal number of demonstrations to learn smooth
representations of tasks. However, our framework remains flexible and can accommodate other
imitation learning pipelines, including behavior cloning with deep learning, depending on the specific
requirements of the task.

When a non-expert provides a demonstration of a task along with a textual description, our framework
automatically translates this information into a ROS service and adds it to the atomic action library.
The demonstration is captured using kinesthetic teaching or teleoperation, allowing the non-expert
to guide the robot through the desired behavior. Subsequently, the learned task is represented as
an atomic action within the library, while the accompanying textual description is included in the
action library descriptions. This process enables the framework to expand its repertoire of available
actions based on user demonstrations and textual annotations, thereby enhancing its adaptability and
versatility in addressing a wide range of tasks.

By empowering non-experts to contribute to the expansion of the action library through imitation
learning, our framework promotes collaborative human-robot interaction. which could accelerate the
development of robot capabilities tailored to specific users’ needs.

4 Experiments

In this section, we present a series of experiments to evaluate the performance and capabilities of
our framework for intuitive robot programming. These experiments encompass diverse scenarios,
ranging from long-horizon tasks to dynamic environment adaptations and intercontinental supervisory
control. Through these experiments, we assess the system’s ability to comprehend natural language
prompts, to generate accurate action sequences, to adapt to changing environments, and to collaborate
effectively with human operators. The experiments showcase our framework’s robustness, scalability,
and versatility, enabling non-experts to program robots effortlessly. Thus, we are advancing the
state-of-the-art in embodied AI and human-robot collaboration.

4.1 Experiments setup

Our real-world robot setup, shown in Figure 3, comprises a Universal Robots UR5 arm equipped
with a Robotiq 2-finger gripper (2F-85) attached at the end-effector. Situated within a kitchen-like
environment, our setup includes various objects such as boxes, a bowl, utensils (e.g., a spoon), a
sink, and a cabinet with a door. We strategically place these objects around the robot within its
workspace to simulate real-world scenarios. The robot is controlled using the ROS Noetic, utilizing
standard packages tailored for UR/Robotiq robots. Our control system runs on a laptop powered by
Ubuntu 20.04, featuring a 16-core i9 Intel CPU, which ensures robust performance and efficient task
execution.

For language processing and task execution, we utilize the Deepseek 7B Coder, an open-source LLM
deployed on a virtual LLM (vLLM) server located in Europe. Communication between the robot
setup in Asia and the vLLM server is established via the internet, with requests transmitted over
HTTP protocol.

To facilitate seamless interaction and task execution, we have developed a chat interface integrated
with an AI agent, a novel framework for integrating and learning structured reasoning into AI agents’
policies. This chat interface enables intuitive communication with the robot system, allowing users
to articulate task requirements and provide feedback effortlessly. Furthermore, we incorporate
Whisper [42], a tool that translates audio into text, offering an alternative interface through spoken
language.

For perception and state estimation, we use an Intel Realsense RGBD camera positioned at a fixed
location facing the robot and scene. Despite the camera’s depth-sensing capabilities, we use only
RGB data channels for computational efficiency to simplify our implementation. In the environment,
we add fiducial marker tags and utilize capabilities from the AprilTag library [38] for sensing their

8

Mug

Coffee

machine

Cabinet

Tools/utensils

AprilTag

Markers

6-DoF UR5

Robot Arm

Robotiq 2f-85

Gripper

Figure 3: Real-world laboratory setup used in our experiments.

poses with respect to the camera frame. To estimate the transformation between the camera the and
robot base frame, we use standard eye-to-base calibration packages from the Moveit library.

In summary, our real-world robot setup leverages state-of-the-art hardware and software components,
coupled with advanced language processing capabilities, to enable intuitive interactions and successful
task execution within a dynamic and realistic environment.

4.2 Long-horizon tasks

The experiment on long-horizon tasks serves to evaluate the system’s ability to comprehend and
execute complex multistep tasks, exemplified by the request “can you make me a coffee”. This
experiment is essential as it represents a real-world scenario where robots need to perform sequential
actions to accomplish a goal, requiring a combination of perception, manipulation, and decision-
making skills.

In this experiment, we employ an open-source language model(Deepseek 7B Coder) to generate
action sequences based on natural language prompts. The need for a detailed, natural language
description of the task steps arises from the intricacies of the language model’s comprehension
capabilities.

We provide the system with a comprehensive atomic action library encompassing a range of fun-
damental actions necessary for coffee preparation. These include reaching, opening/closing doors,
picking up objects, placing objects, switching machines on/off, opening/closing the coffee machine
cover, taking objects out of a cabinet, putting objects back in the cabinet, spooning coffee grounds
from the bowl with a spoon, inserting the mug into the coffee machine, drop objects in the sink.

To execute the task of making coffee, the system first identifies and locates the necessary objects
and equipment in the environment, such as the coffee machine, mug, coffee grounds, and spoon.
Subsequently, it plans a sequence of actions to perform each step of the coffee-making process. This
entails grasping and manipulating objects, navigating the environment, and interacting with the coffee
machine and other appliances.

The system takes as input a task prompt that consists of a natural language description of the task
steps, resembling a recipe for making coffee. This contextual information is crucial for guiding the
system’s understanding and ensuring the generation of accurate action sequences.

In Figure 4, we show the key steps of the experiment, with corresponding photos in Figure 5,
illustrating the systematic execution of actions by the robot in the real-world. The successful outcome

9

Picking up
the mug

Placing
the mug

in the
machine

Opening the
machine

cover

Opening the
cabinet door

Picking up
and place
the bowl

Picking up
the spoon

Scooping
coffee

from the
bowl

Placing
coffee
in the

machine

Closing the
machine

cover

Returning
the bowl

to the cabinet

Closing the
cabinet door

Switching on
the coffee
machine

Figure 4: Detailed steps in the coffee-making process arranged in a modified Z-shaped flow across
four rows.

of the experiment demonstrates the system’s capability to comprehend and execute long-horizon
tasks accurately and efficiently.

Overall, this experiment underscores the effectiveness of our framework in enabling robots to tackle
complex, multistep tasks through intuitive natural language prompts and comprehensive action
libraries.

4.3 Policy correction via human feedback

The ability to correct policy decisions based on human feedback is crucial to enhance the adaptability
and robustness of autonomous systems. In this section, we present experiments assessing the
effectiveness of human feedback in correcting policy errors generated by the LLM. Our objective is
to demonstrate that, as task complexity increases, the performance of the LLM decreases, but that
with the incorporation of human feedback, the success rate can be maintained.

We designed a tabletop rearrangement task involving several colored boxes placed on a table in front
of the robot, with a bowl and a sink nearby. Each task prompt specifies instructions for rearranging
the boxes, such as placing specific colors into the sink or bowl and stacking others. The difficulty of
the task is determined by the number of boxes present in the scene, ranging from 2 to 8 boxes, with 5
unique tasks generated for each number of boxes. In total, 35 tasks were manually created.

For each trial, the LLM generates an action sequence and executes it on the real robot. If the action
sequence is correct, the trial is considered a success; otherwise, human feedback is provided, the
scene is reset, and the policy is executed again. We determine success by comparing the robot’s
actions with the known solution for each task. In cases where human feedback is provided, a second
execution of the policy is performed, and we measure success in the same way.

10

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 5: Detailed steps in the coffee-making process are depicted across twelve images: (a) picking
up the mug, (b) placing the mug in the coffee machine, (c) opening the coffee machine cover, (d)
opening the cabinet door, (e) picking up the bowl, (f) picking up the spoon, (g) scooping coffee from
the bowl, (h) placing the coffee in the machine, (i) closing the coffee machine cover, (j) returning the
bowl to the cabinet, (k) closing the cabinet door, (l) switching on the coffee machine.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 6: Sequence for the 6-cube task, depicted over ten stages: (a) starting, (b) picking up a green
cube, (c) placing the green cube on top of a red cube, (d) picking up an orange cube, (e) dropping
the orange cube into the sink, (f) picking up a blue cube, (g) placing the blue cube on top of another
green cube, (h) picking up another orange cube, (i) placing the orange cube on top of the blue cube,
(j) finishing.

Figure 6 provides a sequence of images demonstrating our system executing a task, while Figure 7
shows the results of our experiments. As expected, we observe a decrease in performance without
human feedback as task difficulty increases. One example of human feedback is when the robot picks
up the wrong cube, and the human indicates that it is not the correct cube and reiterates the correct
task order. Another example is when the robot fails to locate the target cube and raises an error due
to the arm blocking the camera; the human provides the feedback as “Please home the arm before
looking for the cube.” Conversely, the inclusion of human feedback generally leads to improved task
success rates across varying levels of difficulty. However, we note that sometimes human feedback
does not result in a successful task completion, highlighting potential limitations or challenges in the
correction process.

Overall, our experiments demonstrate the effectiveness of human feedback in correcting policy errors
generated by the LLM, thereby enhancing the adaptability and robustness of autonomous systems.

11

Figure 7: Results depicting policy correction through human feedback, where orange indicates task
success with LLM planning and blue indicates task success after correction with human feedback.
The graph illustrates a decrease in the success rate of the LLM as task complexity rises, countered by
sustained success rates with the incorporation of human feedback for action sequence correction.

4.4 Updating the action library with imitation learning

Enhancing robotic skill sets to include a variety of tasks is crucial, especially in household environ-
ments where the required actions may not be sufficiently covered by existing action libraries. To
meet this need, we present an experiment that demonstrates the system’s adaptability and capacity for
continual learning. By showcasing its ability to learn new atomic actions from human demonstrations
and seamlessly integrate them into the action library, we aim to highlight the system’s versatility and
its potential to evolve in response to user needs.

The experiment entails the demonstration of various tasks through kinaesthetic teaching, wherein
a human guides the robot through the execution of specific actions. These actions include stirring,
pouring, tossing the pan, wiping the table, seasoning food, and grating cheese. Each demonstration is
captured and represented using a DMP representation, facilitating the learning process. Subsequently,
the human provides a descriptive label for each atomic action, enriching the action library with
contextual information.

Following the addition of new atomic actions to the library, we challenge the system with a long-
horizon task: “make me pasta.” Leveraging the updated action library, the system orchestrates a
sequence of atomic actions to fully fulfill the task requirements.

This experiment highlights the system’s proficiency in continual learning and adaptation, demon-
strated through its ability to learn diverse atomic actions from human demonstrations and seamlessly
incorporate them into the action library. The successful execution of the “make me pasta” task exem-
plifies the system’s capability to effectively utilize learned atomic actions for complex, long-horizon
tasks. Additionally, the inclusion of descriptive labels improves the action library’s interpretability
and usability, facilitating intuitive task specification by non-experts. This capability enhances the
system’s versatility and applicability in various real-world scenarios, emphasizing its potential as a
valuable tool for intuitive robot programming and enhancing human-robot collaboration in household
environments.

4.5 Adapting to a changing environment and continual learning

The adaptability of robotic systems to dynamic and unpredictable changes in the environment is
crucial for their effective operation in real-world scenarios. In this experiment, we aim to demonstrate

12

(a) (b) (c) (d) (e)

Figure 8: Steps in the pasta-making process, depicted in five stages: (a) grating cheese, (b) pouring
sauce, (c) stirring ingredients, (d) tossing the contents in the wok, (e) adding seasoning.

the capability of our framework to adapt and recover from such changes through continual learning
facilitated by human feedback. The primary goal is to showcase the system’s ability to utilize human
feedback to recover from unforeseen disruptions in task execution and subsequently learn from these
experiences to handle similar changes in the future autonomously.

The experimental protocol is as follows.

1. Task Specification: The system is tasked with “pick and place the box,” a common robotic
manipulation task.

2. Action Sequence Generation: Using the provided task description, the language model
generates an action sequence for execution.

3. Execution and Disruption: As the robot executes the task, the environment is intentionally
perturbed by moving the target box, leading to a failure to grasp the object.

4. Human Feedback: Upon observing the failure, the human provides corrective feedback,
advising the system to ensure the box’s proximity before grasping and then to retry the task.

5. Recovery and Adaptation: Leveraging the feedback, the system adapts its approach and
successfully completes the task, demonstrating its ability to recover from environmental
changes through human-guided learning.

To evaluate the system’s capability for continual learning, a second trial is conducted under identical
conditions, with the box moved simultaneously as in the previous trial. However, this time, the
human feedback from the initial trial is incorporated into the task prompt. By doing so, we aim
to assess whether the system autonomously applies the learned corrective action to handle similar
environmental changes without human intervention.

The results of the experiment demonstrate the efficacy of our framework in adapting to changing
environments and leveraging human feedback for continual learning. By successfully recovering
from unforeseen disruptions and autonomously applying learned strategies in subsequent trials, the
system showcases its resilience and ability to evolve through experience. These findings highlight the
potential of our framework to enhance robustness and adaptability in real-world robotic applications,
paving the way for more reliable and versatile autonomous systems.

4.6 Remote supervisory control

(a) (b) (c) (d)

Figure 9: Remote supervisory control using (a) language interfaces, depicted through continuous
actions with two interfaces: (b) picking up a cube, (c) avoiding obstacles, (d) placing the cube in a
bowl.

13

The capability for remote supervisory control of robotic systems holds significant promise for a
variety of applications, particularly in environments where direct human presence is impractical or
unsafe, e.g. [35]. Tasks such as offshore inspection and maintenance, search and rescue operations,
mining activities, and space robotics often necessitate remote operations due to safety concerns and
logistical challenges. Moreover, the integration of 5G technology further enhances the feasibility and
effectiveness of remote control systems, offering high-speed, low-latency communication capabilities
that are essential for near real-time interaction between operators and robots over vast distances.
For instance, handling obstacles in the environment, such as debris in search and rescue, may pose
challenges for the robot’s perception algorithms, requiring human intervention to guide the robot
effectively.

In our experiment, conducted with the operator located in Europe and the robot system situated
in Asia, participants were tasked with controlling the robot to perform pick-and-place manoeuvres
with obstacles present in the scene. The action library provided to the operator included basic
movement commands such as move_left, move_right, move_up, move_down, move_forward,
move_backward, open_gripper, and close_gripper. The operator communicated commands to
the robot using natural language, describing where they wanted the robot to move and manipulate
objects in the environment. A camera feed provided visual feedback to the operator, enabling them to
perceive the scene remotely. Remote supervisory control experiments using the language interface
are shown in Figure 9a.

A significant lag in the system, measured at approximately 2–3 seconds, was observed due to the long
distance between the operator and the robot system. Despite this latency, participants successfully
completed the assigned tasks using the language-based interface, demonstrating the effectiveness of
our framework for remote supervisory control.

Seven volunteers participated in the experiment. Each participant was required to complete two
tasks. The first task involved picking up the blue box and placing it in the blue bowl, and the second
task involved picking up a red box and placing it on the white area of the table while avoiding an
obstacle in the middle, as shown in Figure 9 and 10. To evaluate the performance and usability of
the human-robot interaction [54], we recorded the time taken to complete each task. Furthermore,
usability was assessed using the NASA Task Load Index (NASA-TLX) [15] and pairwise subscale
comparisons, which provided a comprehensive view of user experience across various dimensions.
Seven participants’ results yielded valuable insights into the method’s performance and usability,
underscoring our framework as a practical tool for developing supervisory control using natural
language in real-world scenarios. Detailed results are shown in Table 1 and Figure 11 for further
analysis and discussion.

5 Discussion

The results of our experiments highlight the potential of this approach to simplify the interaction
between non-expert users and robotic systems through natural language. This section discusses
the implications of our findings, the limitations and strengths of the current framework, and future
directions for research.

Table 1: Task time for the remote supervisory control experiment.
LLM

No. Task 1 Task 2
1 5:09 9:40
2 6:10 9:55
3 5:06 7:31
4 11:40 15:42
5 5:05 4:51
6 5:32 7:45
7 4:27 7:37

Avg 6:09 9:00

14

Task 1

Task 2

Figure 10: Experiment setup for the human study.

Figure 11: Weighted NASA TLX results for remote supervisory control.

5.1 Performance observations in long-horizon tasks

Alongside the promising outcomes, our extensive experiments have uncovered a range of interesting
phenomena, showcasing both notable strengths and areas in need of improvement within the current
framework. These findings highlight the robust capabilities of our approach while also pinpointing
challenges that guide further development. This balanced perspective not only underscores the
potential of our work but also clearly delineates paths for enhancing performance and reliability.

5.1.1 Sensitive prompt

During our experiments, we observed that minor variations in prompt wording significantly impact
the model’s output, revealing both vulnerabilities and strengths in its language processing capabilities.
For example, the model generated the correct action sequence when the prompt used “another cube”
to indicate the second cube but struggled with “the other cube.” Similarly, discrepancies arose with
the prompts “put box A on box B” versus “put box A on top of box B,” where the addition of “on top
of” altered the generated actions.

15

Conversely, the model demonstrated robustness to other variations, such as replacing “put box” with
“move box” and changing phrases from “in the bowl” to “to the bowl.” These instances did not affect
the model’s performance, indicating a certain level of linguistic flexibility.

Possible explanations for these observed behaviors might include:

• Training Data Variance: The model’s differential response could be attributed to the
frequency and context of phrase occurrences in its training data. Phrases like “move box”
and “put box” might appear interchangeably across diverse contexts, helping the model
learn their equivalence.

• Semantic Parsing Differences: For the phrases that cause discrepancies, it may be that the
model perceives “on top of” as indicating a more precise spatial relationship, thus requiring
more specific handling in action generation. This points to a nuanced understanding of
prepositions and their implications in task execution.

• Context Sensitivity: The model might be particularly sensitive to certain keywords or
phrases that imply a change in action complexity or specificity, such as spatial relations that
require precise positioning.

These findings underscore the need for enhanced natural language understanding within robotic AI
systems. Improving the model’s ability to generalize across varied linguistic inputs is crucial without
losing contextual accuracy. Enhancements should focus on better handling of semantic nuances and
increasing the robustness against minor linguistic variations to develop more reliable and capable
robotic assistants.

5.1.2 Confusing example

During our experiments, we encountered specific issues where including example action sequences
in the prompts led to confusion for the model. Notably, the model occasionally attempted to execute
actions on objects mentioned in the example sequences, but that were not actually present in the
real-world environment state. This confusion stems from the model’s inability to distinguish between
illustrative examples provided for context with current environment observation and actual commands.

This issue highlights a significant challenge in the design of natural language interfaces for robotic
systems: the need for improved parsing and contextual understanding. The model’s current parsing
mechanisms may not effectively differentiate between descriptive content (intended to enhance
understanding or provide background information) and imperative content (direct commands).

Possible strategies to mitigate this issue could include:

• Contextual Tagging: Implementing a tagging system in the training phase where example
actions and real commands are tagged differently could help the model learn to distinguish
between these types of content more effectively.

• Enhanced Semantic Analysis: Developing more advanced semantic analysis capabilities
that can interpret the context and intent behind each phrase more accurately. This could
involve deeper training on linguistic cues that indicate hypothetical or illustrative scenarios
versus actionable instructions.

• User Feedback Integration: Incorporating a feedback loop where the system asks for
confirmation or clarification when it detects potential ambiguities in the prompt could
prevent incorrect actions based on misinterpretations.

Addressing these parsing and contextual understanding challenges is crucial for advancing the
usability and reliability of natural language interfaces in robotic systems. By enhancing the model’s
ability to discern and segregate different types of linguistic inputs accurately, we can significantly
reduce errors and improve the system’s overall performance in real-world tasks.

5.1.3 Robust long-term planning

An interesting aspect of our experiments was evaluating the model’s long-horizon planning capabili-
ties. Typically, the success rate of tasks is expected to decrease with an increase in the number of steps
involved due to the accumulation of potential errors at each stage. However, our findings challenge

16

this expectation. The model demonstrated a notable consistency in success rates across experiments
involving 4 to 8 cubes. This observation suggests that the model possesses robust error-handling
and planning capabilities that maintain performance even as task complexity increases, as shown in
Figure 7.

These results are encouraging for the deployment of this framework in scenarios requiring com-
plex sequential task execution, highlighting its potential reliability and effectiveness in practical
applications.

5.2 Enhancing policy correction via human feedback

Targeted human feedback has shown the potential to mitigate this degradation by correcting erroneous
policy decisions dynamically. We noticed that due to the variety of mistakes made by the LLM, there
is no one-size-fits-all feedback correction.

5.2.1 Feedback implementation

Our findings underscore that not all feedback is equally effective. Specific, actionable feedback that
directly corrects the decision-making process or clarifies the task’s objectives tends to result in more
favourable outcomes. For instance, if the LLM incorrectly sequences the actions (e.g. attempting to
place a cube before picking it up), repeating the command with the correct sequence often resolves
the error, effectively reprogramming the LLM’s task strategy.

Also, the human feedback needs to indicate the correction action or action sequence instead of only
pointing out the mistake itself. For example, if the LLM erroneously attempts to place a blue cube on
a green cube before securing the blue cube, the provided feedback would explicitly instruct to “Pick
up the blue cube first, then place it on the green cube.” instead of ”You picked up the cube in a wrong
order.”

5.3 Usability for remote supervisory control

From the remote supervisory control experiment, we observed notable phenomena related to the
human-robot interface. Overall, we noticed that participants experienced similar mental, physical,
and temporal demands during the operation, as shown in Figure 11. This suggests that the system
maintains a balanced workload distribution.

5.3.1 Stability of LLM

During the experiment, we found that the LLM interface exhibited stability issues. Operators’
freedom to input any command increased the likelihood of ambiguous instructions and typographical
errors. For instance, operators have placed commands outside the giving action, including “go but
avoid the water” and “move the hand as close to the table as possible”. This highlights the need for
further research to improve the robustness of LLMs in managing ambiguous inputs during robotic
operations.

Also, even when commands were entered correctly, there was still a small chance of execution errors.
There were instances where the robot executed a command twice, repeated a command continuously
without stopping, or misinterpreted the number of steps required by a command.

One participant left the following feedback:“ Language is easier to use due to the ability to execute
sequences, although occasionally the sequence was not executed entirely correctly.”

5.3.2 Limitations of the experiment

In addition to the LLM being tested, visual feedback significantly impacts the system’s performance
and workload. Participant feedback indicates that video resolution plays a more crucial role than time
delay. Furthermore, only providing a single camera view for the operator in the experiment made
it challenging to accurately determine the distance to an object. However, with higher resolution,
participants were able to infer the relative position of other objects through shadows and reflections.

Additionally, mistakes can significantly impact task duration. The most common error is dropping
the cube outside the bowl, requiring the robot to pick up the cube again, which is time-consuming. In

17

some cases, when the cube is dropped very close to the bowl, it requires fine movement to get the
end-effector to the right position.

Another common mistake is perspective reversal. However, the participant usually can recover
quickly from the mistake, and it only has a small impact on task time.

6 Related work

This section reviews various approaches that enhance the interaction between robots and human
language, focusing on task planning through action composition with the integration of language
models and robotic systems. The comparative analysis presented in Table 2 highlights distinct
contributions in the existing approaches within the domain of robotic task execution using language
models, including utilising open-source model, correcting mistakes on the fly with human and
environment feedback, validating with real robot experiment, capability for ROS interface and
fine-tuning, and integrating multimodal.

Kim et al. [25] conducted a user study on LLM-powered human-robot interaction. Their findings
indicate that LLM-powered robots excel in tasks involving connection-building and deliberation but
face challenges in logical communication and inducing anxiety.

6.1 Action composition from language

The integration of language models with robotic systems for task planning through action composition
has been explored in various studies. Zeng et al. [59] developed Socratic Models to enhance
multimodal capabilities without the need for fine-tuning. Li et al. [28] introduced Chain of Code,
which leverages code execution to bolster reasoning processes. Kwon et al. [27] demonstrated
the use of language models to predict robot end-effector poses based on visual inputs and task
descriptions, showcasing direct application in robotic control. Silver et al. [44] explored how closed-
sourced models like GPT-4 can generate Python programs for task planning within Planning Domain
Definition Language (PDDL) domains, a framework with a long history in the field of automated
planning and scheduling.

Song et al. [48] introduced the LLM-Planner for embodied agents, focusing on few-shot grounded
planning to leverage LLMs, and emphasized the need for dynamic planning adaptability in complex
environments. This work aligns closely with traditional symbolic planning [4] but introduces a novel
integration of natural language processing, addressing both the symbolic and dynamic aspects of task
planning. Wang et al. [55] developed LaMI, an LLM-based system designed to enhance multi-modal
human-robot interaction. This system integrates high-level linguistic guidance, atomic actions, and
multi-modal expressions to regulate robot behavior.

Izzo et al. [22] and Yang et al. [57] take a structured approach by translating natural language
into behavior trees and state machines, respectively, which guides robotic behavior in a fixed and
somewhat rigid framework. In contrast, our work emphasizes a more dynamic and flexible generation
of executable action sequences directly from natural language prompts. This not only simplifies
the user interface but also enhances the adaptability of the system to a wider range of tasks and
environments without the constraints of pre-defined structures of behavior trees or state machines.
Our method also corrects its mistakes based on human and environmental feedback, crucial for
practical applications in dynamic environments, setting it apart from these more static and predefined
approaches.

6.2 Incorporating human feedback

Most current systems operate in an open-loop configuration without the capability for error recovery.
Shi et al. [43] introduce a framework where robots anticipate failures and proactively request human
help to refine their task execution. Han et al. [14] develop a system that allows robots to explain
their actions and receive corrective feedback from users, enhancing transparency and trust. Singh et
al. [45] create an interactive prompting system that uses structured feedback to correct robot tasks,
catering especially to technical and educational settings. Liu et al. [30] introduced OLAF (Operation-
relabeled Learning with Language Feedback), a system that learns robot policies interactively using
verbal corrections. It updates the robot’s visuomotor neural policy based on verbal feedback to avoid

18

Table 2: Comparison of related works on the Use of Open-Sourced Models, Human Feedback, Real
Robot Experiments, and ROS Integration.

O
pe

n-
So

ur
ce

M
od

el

H
um

an
Fe

ed
ba

ck

E
nv

ir
on

m
en

tF
ee

db
ac

k

R
ea

lR
ob

ot
E

xp
er

im
en

t

R
em

ot
e

C
on

tr
ol

R
O

S
C

ap
ab

ili
ty

Fi
ne

-T
un

in
g

C
ap

ab
ili

ty

M
ul

tim
od

al
In

te
gr

at
io

n

Ours ✓ ✓ ✓ ✓ ✓ ✓ ✓ WIP
Btgenbot [22] ✓ ✓ ✓
GLM2FSA [57] ✓
Socratic models [59] ✓
Chain of code [28]
To help or not to help [49] ✓ ✓
Kwon et al. [27] ✓
Statler [58] ✓
Embodiedgpt [37] ✓ ✓ ✓
Huang, Abbeel, et al. [17]
Yell at your robot [43] ✓ ✓ ✓ ✓ ✓
Rt-h [3] ✓ ✓ ✓
Vima [23] ✓ ✓ ✓
Natural language as policies [33] ✓
Clipswarm [40] ✓ ✓
Progprompt [45] ✓ ✓
Llm-brain [31] ✓ ✓ ✓
Cao and Lee[6]
Grounded decoding [18] ✓ ✓
Silver, Tom, et al. [44]
CLMASP [29]
InterPreT [14] ✓ ✓
LLM-Planner [48] ✓
OLAF [30] ✓ ✓ ✓
LaMI [55] ✓ ✓ ✓

repeating mistakes. Our framework enables real-time interaction and task execution, facilitating
natural user interaction between steps without requiring prior coding knowledge.

6.3 Utilizing open-source models

The use of open-source models in robotics research greatly facilitates accessibility and reproducibility,
essential for advancing the field. Open-source frameworks allow researchers and developers to
replicate studies and verify results, enhancing the credibility and scalability of the technologies
developed. Mu et al. [37] and Huang [18] harness various open-source language models to drive their
research, while Pueyo et al. [40] utilize the multimodal capabilities of the CLIP model to explore
new robotic functionalities.

Our approach builds on these foundations by exclusively employing open-source models, which
ensures that our methodologies are transparent and easily accessible to the robotics community. This
commitment supports more stable development environments and reproducibility of results. Moreover,
by integrating these models with real-world feedback mechanisms, our framework enhances the
dynamic control capabilities necessary for practical applications, addressing critical gaps observed
in previous studies like those by Cao and Lee [6], which lack empirical validation on actual robotic
platforms. Thus, our work not only leverages the foundational benefits of open-source software to

19

ensure reproducibility and enhance community engagement but also pushes the boundaries of what
these models can achieve in real-world settings.

6.4 Experiment on real robots

Experimenting with real robots is a crucial step in robotics research, as it allows for the validation
and refinement of theoretical models. Several studies have implemented their methodologies on real
robots, but the integration with widely used platforms like the Robot Operating System (ROS) remains
limited. Tanneberg et al. [49], Kwon et al. [27], and others have demonstrated practical applications,
yet the potential for easier study and development through ROS integration is largely untapped. Our
framework aims to fill this gap, providing a robust solution that combines the benefits of open-source
models, human feedback, and easy deployment. Furthermore, contrasting with simulation-only
studies such as Pueyo et al. [40], our framework emphasizes practical, real-world testing to ensure
operational reliability and scalability.

7 Use cases

In this section, we report use-cases of our framework in the wild.

7.1 LEJU Robotics Humanoid Kitchen Demonstration

The proposed framework has been recently adapted by LEJU Robotics to demonstrate their humanoid
robot working in a kitchen setting, shown in Figure 12. The robot was tasked with cooking a meal
based on user input, i.e. the human asked the robot to cook a particular dish. The system hardware
includes the humanoid robot from LEJU, a Shiwan 3.0 Pro intelligent cooking machine from TINECO,
and several pre-prepared ingredients placed in bowls. The humanoid robot is equipped with an Intel
Realsense RGB-D camera on its head.

Atomic actions were developed for both the humanoid robot and the cooking machine system. The
cooking machine actions are pre-set by the manufacturer, e.g. “heat pan to {TEMPERATURE}”
where {TEMPERATURE} is the desired temperature. In the case of the humanoid robot, atomic
actions are developed solely with imitation learning. For example, a control policy was learned for the
atomic action with textual description “put the {INGREDIENT} in the bowl” where {INGREDIENT}
is replaced with an ingredient such as “broccoli”. Several demonstrations of each atomic action are
provided via a teleoperation interface. Once a database of demonstrations is collected, a policy is
learned that maps the textual description and RGB image to the robot’s end-effector displacement.

Figure 12: LEJU Robotics Humanoid setup for a kitchen demonstration.

20

Subsequently, an inverse-kinematics controller translates these end-effector displacements into
specific joint commands. Once refined, this learned control policy is systematically integrated into
the library as a predefined atomic action.

The voice input from the user is recorded using a microphone and converted into text which is used
as the task description. Given the task description, the language model generates an appropriate
sequence for the atomic actions that is then executed on the system. Future development plans are to
increase the atomic library, improve capabilities of the humanoid system, and replace the language
model with a vision-language model.

7.2 Robotics Air Hockey Challenge

Bridging the simulation-reality gap is crucial for achieving high-performing embodied intelligence.
Deploying learning approaches on real-world robots requires addressing practical challenges such
as disturbances, observation noise, safety, model mismatches, delays, actuator limitations, physical
feasibility, and limited real-world interactions. Additionally, future robots must dynamically react to
their environments, execute agile movements, and engage in long-horizon planning. The Robot Air
Hockey Challenge, shown in Figure 13, was developed as a collaborative platform for researchers
to tackle a realistic robotic task. Teams designed and built air hockey agents, competed in various
sub-tasks (in simulation) and finished in full games (both in simulation and the real world).

When humans learn a new skill (such as air hockey), it is common that a tutor/mentor will provide
feedback and suggestions for their improvement. The learner internalizes this feedback and augments
their behavior in such a way to improve their future performance. In contrast, current robot systems
require experts to update a control policy directly to improve the model performance. We are utilizing
our framework as an intuitive interface to enable a human non-expert to modify the control policy of
the robot in order to improve the systems’ performance within the context of the Robot Air Hockey
Challenge. The goal being to evaluate the low-level atomic action execution performance across
diverse scenarios. Experiments will be reported in future updates of this article.

8 Conclusions

In this section, we provide an overview of our main conclusions, acknowledge the current limitations
of our framework and highlight potential future directions.

8.1 Overview

This work presents a ROS framework for intuitive robot programming, leveraging natural language
prompts and contextual information from the robot environment and human feedback. Through
a series of experiments conducted on a real-world robot setup, we have demonstrated the efficacy
and versatility of our framework in enabling non-experts to program robots. The integration of
open-source language models and common tools such as ROS with an AI agent represents a step
towards realizing automated robotic solutions that can address real-world challenges in research
and industry. We have reported two case studies that indicate how our framework is demonstrably
accelerating companies and research groups into useful deployment in different types of environments
and scales.

8.2 Limitations

It is important to acknowledge the current limitations of our system. Presently, our experiments
rely solely on action sequences, which are not adaptable without human feedback. For example,
if the robot must open a door and navigate through, then it may be worthwhile to attempt opening
the door several times in case of failure of the first or subsequent attempts. This repetition could
be achieved with a behavior tree, for example. We have recently added an interface that is able to
execute behavior trees generated by the language model in the form of an XML file - this feature is
already usable in our code base. Future work will investigate the benefits of using behavior trees in
real-world laboratory setups.

Currently, we provide feedback, i.e. an observation, only in text form. This neglects potentially
informative data such as images and interaction forces with humans.

21

Figure 13: The setup for the Robot Air Hockey Challenge with two KUKA IIWA robot arms.

Our framework provides a reward function in the problem formulation. One limitation is that the
reward function is heavily dependent on the failure flag. In some cases of command, such as opening
a door without specifying an angle, it can be difficult to determine whether the action is successful.
Also, the design of the reward function focused on achieving task-specific outcomes. As tasks become
more complex, involving a sequence of atomic actions, the dependency on a single reward signal at
the end of the sequence may not provide enough guidance to the agent.

8.3 Future work

There are several avenues for future research and development we are interested in pursuing. We plan
to extend our framework to more versatile robotic platforms, including quadrupeds and quadrupeds
with an arm. Additionally, we aim to integrate our system with vision-language models to enhance
its perceptual capabilities.

Moreover, while our current system supports ROS 1 (Noetic), we intend to provide support for ROS
2 (Humble) to broaden its compatibility and applicability. Additionally, we plan to explore the use
of other behavior representations, such as state machines and behavior trees, to further enhance the
flexibility and adaptability of our framework.

Whilst we have shown promise that pre-trained language models are capable of orchestrating action
sequences for several tasks, there is an opportunity to fine-tune the language model. However, there
are significant challenges associated with fine-tuning language models for robotics, notably the issue
of the gap between simulation and reality. We aim to investigate the potential of fine-tuning language
models within our framework.

Finally, as mentioned in the previous sub-section, our reward function is limited. Future work will
additionally investigate reward shaping for more diversified tasks, including nonbinary rewards.

The standardization and versatility of our framework in a variety of industries and research settings
are creating opportunities for new collaborations, faster development, and propelling newly developed
technologies forward. This trend will likely continue to manifest in the coming years as the ROS-LLM
framework continues to mature.

In our approach, atomic actions are pre-trained or pre-defined policies. In future work, we may be
able to fine-tune these individual policies to have faster and more effective atomic actions.

22

References

[1] Andrew G. Barto and Sridhar Mahadevan. Recent advances in hierarchical reinforcement
learning. Discrete Event Dynamic Systems, 13(4):341–379, Oct 2003.

[2] Patrick Beeson and Barrett Ames. Trac-ik: An open-source library for improved solving of
generic inverse kinematics. In 2015 IEEE-RAS 15th International Conference on Humanoid
Robots (Humanoids), pages 928–935, 2015.

[3] Suneel Belkhale, Tianli Ding, Ted Xiao, Pierre Sermanet, Quon Vuong, Jonathan Tompson,
Yevgen Chebotar, Debidatta Dwibedi, and Dorsa Sadigh. Rt-h: Action hierarchies using
language, 2024.

[4] Calin Belta, Antonio Bicchi, Magnus Egerstedt, Emilio Frazzoli, Eric Klavins, and George J.
Pappas. Symbolic planning and control of robot motion [grand challenges of robotics]. IEEE
Robotics & Automation Magazine, 14(1):61–70, 2007.

[5] H. Bruyninckx. Open robot control software: the orocos project. In Proceedings 2001 ICRA.
IEEE International Conference on Robotics and Automation (Cat. No.01CH37164), volume 3,
pages 2523–2528 vol.3, 2001.

[6] Yue Cao and C. S. George Lee. Robot behavior-tree-based task generation with large language
models, 2023.

[7] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto,
Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul
Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke
Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad
Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias
Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex
Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra,
Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer,
Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech
Zaremba. Evaluating large language models trained on code. 2021.

[8] Sachin Chitta, Eitan Marder-Eppstein, Wim Meeussen, Vijay Pradeep, Adolfo Rodríguez
Tsouroukdissian, Jonathan Bohren, David Coleman, Bence Magyar, Gennaro Raiola, Mathias
Lüdtke, and Enrique Fernandez Perdomo. ros_control: A generic and simple control framework
for ros. Journal of Open Source Software, 2(20):456, 2017.

[9] David Coleman, Ioan Sucan, Sachin Chitta, and Nikolaus Correll. Reducing the barrier to entry
of complex robotic software: a moveit! case study. arXiv preprint arXiv:1404.3785, 2014.

[10] John G. Everett and Alexander H. Slocum. Automation and robotics opportunities: Construction
versus manufacturing. Journal of Construction Engineering and Management, 120(2):443–452,
1994.

[11] Tully Foote. tf: The transform library. In 2013 IEEE Conference on Technologies for Practical
Robot Applications (TePRA), pages 1–6, 2013.

[12] Simon Frieder, Luca Pinchetti, Alexis Chevalier, Ryan-Rhys Griffiths, Tommaso Salvatori,
Thomas Lukasiewicz, Philipp Christian Petersen, and Julius Berner. Mathematical capabilities
of chatgpt, 2023.

[13] Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen,
Xiao Bi, Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wenfeng Liang. Deepseek-coder: When
the large language model meets programming – the rise of code intelligence, 2024.

[14] Muzhi Han, Yifeng Zhu, Song-Chun Zhu, Ying Nian Wu, and Yuke Zhu. Interpret: Interactive
predicate learning from language feedback for generalizable task planning, 2024.

[15] Sandra G Hart. NASA task load index (TLX). 1986.
[16] Albert S. Huang, Edwin Olson, and David C. Moore. Lcm: Lightweight communications and

marshalling. In 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 4057–4062, 2010.

[17] Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as
zero-shot planners: Extracting actionable knowledge for embodied agents, 2022.

23

[18] Wenlong Huang, Fei Xia, Dhruv Shah, Danny Driess, Andy Zeng, Yao Lu, Pete Florence, Igor
Mordatch, Sergey Levine, Karol Hausman, and Brian Ichter. Grounded decoding: Guiding text
generation with grounded models for embodied agents, 2023.

[19] Martin Huber, Christopher E. Mower, Sebastien Ourselin, Tom Vercauteren, and Christos
Bergeles. Lbr-stack: Ros 2 and python integration of kuka fri for med and iiwa robots, 2024.

[20] Arda Inceoglu, Eren Erdal Aksoy, and Sanem Sariel. Multimodal detection and classification of
robot manipulation failures. IEEE Robotics and Automation Letters, 9(2):1396–1403, 2024.

[21] Matteo Iovino, Edvards Scukins, Jonathan Styrud, Petter Ögren, and Christian Smith. A survey
of behavior trees in robotics and ai. Robotics and Autonomous Systems, 154:104096, 2022.

[22] Riccardo Andrea Izzo, Gianluca Bardaro, and Matteo Matteucci. Btgenbot: Behavior tree
generation for robotic tasks with lightweight llms, 2024.

[23] Yunfan Jiang, Agrim Gupta, Zichen Zhang, Guanzhi Wang, Yongqiang Dou, Yanjun Chen,
Li Fei-Fei, Anima Anandkumar, Yuke Zhu, and Linxi Fan. Vima: General robot manipulation
with multimodal prompts, 2023.

[24] Ehsan Kamalloo, Aref Jafari, Xinyu Zhang, Nandan Thakur, and Jimmy Lin. HA-
GRID: A human-llm collaborative dataset for generative information-seeking with attribution.
arXiv:2307.16883, 2023.

[25] Callie Y Kim, Christine P Lee, and Bilge Mutlu. Understanding large-language model (llm)-
powered human-robot interaction. In Proceedings of the 2024 ACM/IEEE International Confer-
ence on Human-Robot Interaction, pages 371–380, 2024.

[26] Nathan Koenig and Andrew Howard. Design and use paradigms for gazebo, an open-source
multi-robot simulator. In IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 2149–2154, Sendai, Japan, Sep 2004.

[27] Teyun Kwon, Norman Di Palo, and Edward Johns. Language models as zero-shot trajectory
generators, 2023.

[28] Chengshu Li, Jacky Liang, Andy Zeng, Xinyun Chen, Karol Hausman, Dorsa Sadigh, Sergey
Levine, Li Fei-Fei, Fei Xia, and Brian Ichter. Chain of code: Reasoning with a language
model-augmented code emulator, 2023.

[29] Xinrui Lin, Yangfan Wu, Huanyu Yang, Yu Zhang, Yanyong Zhang, and Jianmin Ji. Clmasp:
Coupling large language models with answer set programming for robotic task planning, 2024.

[30] Huihan Liu, Alice Chen, Yuke Zhu, Adith Swaminathan, Andrey Kolobov, and Ching-An
Cheng. Interactive robot learning from verbal correction, 2023.

[31] Artem Lykov and Dzmitry Tsetserukou. Llm-brain: Ai-driven fast generation of robot behaviour
tree based on large language model, 2023.

[32] Steven Macenski, Tully Foote, Brian Gerkey, Chris Lalancette, and William Woodall. Robot op-
erating system 2: Design, architecture, and uses in the wild. Science Robotics, 7(66):eabm6074,
2022.

[33] Yusuke Mikami, Andrew Melnik, Jun Miura, and Ville Hautamäki. Natural language as policies:
Reasoning for coordinate-level embodied control with llms, 2024.

[34] Christopher Mower, Theodoros Stouraitis, Joao Moura, Christian Rauch, Lei Yan, Nazanin Za-
mani Behabadi, Michael Gienger, Tom Vercauteren, Christos Bergeles, and Sethu Vijayakumar.
Ros-pybullet interface: A framework for reliable contact simulation and human-robot interaction.
In Conference on Robot Learning, pages 1411–1423. PMLR, 2023.

[35] Christopher E Mower, Joao Moura, and Sethu Vijayakumar. Skill-based Shared Control. In
Proceedings of Robotics: Science and Systems, Virtual, July 2021.

[36] Christopher E. Mower, João Moura, Nazanin Zamani Behabadi, Sethu Vijayakumar, Tom
Vercauteren, and Christos Bergeles. Optas: An optimization-based task specification library for
trajectory optimization and model predictive control. In 2023 IEEE International Conference
on Robotics and Automation (ICRA), pages 9118–9124, 2023.

[37] Yao Mu, Qinglong Zhang, Mengkang Hu, Wenhai Wang, Mingyu Ding, Jun Jin, Bin Wang,
Jifeng Dai, Yu Qiao, and Ping Luo. Embodiedgpt: Vision-language pre-training via embodied
chain of thought, 2023.

24

[38] Edwin Olson. Apriltag: A robust and flexible visual fiducial system. In 2011 IEEE International
Conference on Robotics and Automation, pages 3400–3407, 2011.

[39] OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Flo-
rencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat,
Red Avila, Igor Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao,
Mohammad Bavarian, Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro,
Christopher Berner, Lenny Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman,
Greg Brockman, Tim Brooks, Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, An-
drew Cann, Brittany Carey, Chelsea Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis
Chantzis, Derek Chen, Sully Chen, Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester
Cho, Casey Chu, Hyung Won Chung, Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory
Decareaux, Thomas Degry, Noah Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve
Dowling, Sheila Dunning, Adrien Ecoffet, Atty Eleti, Tyna Eloundou, David Farhi, Liam Fedus,
Niko Felix, Simón Posada Fishman, Juston Forte, Isabella Fulford, Leo Gao, Elie Georges,
Christian Gibson, Vik Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-Lopes, Jonathan
Gordon, Morgan Grafstein, Scott Gray, Ryan Greene, Joshua Gross, Shixiang Shane Gu, Yufei
Guo, Chris Hallacy, Jesse Han, Jeff Harris, Yuchen He, Mike Heaton, Johannes Heidecke,
Chris Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele, Brandon Houghton, Kenny Hsu,
Shengli Hu, Xin Hu, Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne Jang, Angela Jiang,
Roger Jiang, Haozhun Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo Jun, Tomer Kaftan,
Łukasz Kaiser, Ali Kamali, Ingmar Kanitscheider, Nitish Shirish Keskar, Tabarak Khan, Logan
Kilpatrick, Jong Wook Kim, Christina Kim, Yongjik Kim, Jan Hendrik Kirchner, Jamie Kiros,
Matt Knight, Daniel Kokotajlo, Łukasz Kondraciuk, Andrew Kondrich, Aris Konstantinidis,
Kyle Kosic, Gretchen Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan Leike,
Jade Leung, Daniel Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie Lin, Mateusz
Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini, Sam Man-
ning, Todor Markov, Yaniv Markovski, Bianca Martin, Katie Mayer, Andrew Mayne, Bob
McGrew, Scott Mayer McKinney, Christine McLeavey, Paul McMillan, Jake McNeil, David
Medina, Aalok Mehta, Jacob Menick, Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie
Monaco, Evan Morikawa, Daniel Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély,
Ashvin Nair, Reiichiro Nakano, Rajeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo
Noh, Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pan-
tuliano, Giambattista Parascandolo, Joel Parish, Emy Parparita, Alex Passos, Mikhail Pavlov,
Andrew Peng, Adam Perelman, Filipe de Avila Belbute Peres, Michael Petrov, Henrique Ponde
de Oliveira Pinto, Michael, Pokorny, Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea
Power, Boris Power, Elizabeth Proehl, Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh,
Cameron Raymond, Francis Real, Kendra Rimbach, Carl Ross, Bob Rotsted, Henri Roussez,
Nick Ryder, Mario Saltarelli, Ted Sanders, Shibani Santurkar, Girish Sastry, Heather Schmidt,
David Schnurr, John Schulman, Daniel Selsam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh,
Sarah Shoker, Pranav Shyam, Szymon Sidor, Eric Sigler, Maddie Simens, Jordan Sitkin, Kata-
rina Slama, Ian Sohl, Benjamin Sokolowsky, Yang Song, Natalie Staudacher, Felipe Petroski
Such, Natalie Summers, Ilya Sutskever, Jie Tang, Nikolas Tezak, Madeleine B. Thompson, Phil
Tillet, Amin Tootoonchian, Elizabeth Tseng, Preston Tuggle, Nick Turley, Jerry Tworek, Juan
Felipe Cerón Uribe, Andrea Vallone, Arun Vijayvergiya, Chelsea Voss, Carroll Wainwright,
Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan Ward, Jason Wei, CJ Weinmann, Akila
Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng, Matt Wiethoff, Dave Willner, Clemens
Winter, Samuel Wolrich, Hannah Wong, Lauren Workman, Sherwin Wu, Jeff Wu, Michael Wu,
Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming Yuan, Wojciech Zaremba, Rowan Zellers,
Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao Zheng, Juntang Zhuang, William Zhuk,
and Barret Zoph. Gpt-4 technical report, 2024.

[40] Pablo Pueyo, Eduardo Montijano, Ana C. Murillo, and Mac Schwager. Clipswarm: Generating
drone shows from text prompts with vision-language models, 2024.

[41] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs, Rob
Wheeler, Andrew Y Ng, et al. Ros: an open-source robot operating system. In ICRA workshop
on open source software, volume 3, page 5. Kobe, Japan, 2009.

[42] Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya
Sutskever. Robust speech recognition via large-scale weak supervision. In International
Conference on Machine Learning, pages 28492–28518. PMLR, 2023.

25

[43] Lucy Xiaoyang Shi, Zheyuan Hu, Tony Z. Zhao, Archit Sharma, Karl Pertsch, Jianlan Luo,
Sergey Levine, and Chelsea Finn. Yell at your robot: Improving on-the-fly from language
corrections, 2024.

[44] Tom Silver, Soham Dan, Kavitha Srinivas, Joshua B. Tenenbaum, Leslie Pack Kaelbling, and
Michael Katz. Generalized planning in pddl domains with pretrained large language models,
2023.

[45] Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit Goyal, Danfei Xu, Jonathan Tremblay,
Dieter Fox, Jesse Thomason, and Animesh Garg. Progprompt: Generating situated robot task
plans using large language models, 2022.

[46] Karan Singhal, Shekoofeh Azizi, Tao Tu, S. Sara Mahdavi, Jason Wei, Hyung Won Chung,
Nathan Scales, Ajay Tanwani, Heather Cole-Lewis, Stephen Pfohl, Perry Payne, Martin Senevi-
ratne, Paul Gamble, Chris Kelly, Abubakr Babiker, Nathanael Schärli, Aakanksha Chowdhery,
Philip Mansfield, Dina Demner-Fushman, Blaise Agüera y Arcas, Dale Webster, Greg S.
Corrado, Yossi Matias, Katherine Chou, Juraj Gottweis, Nenad Tomasev, Yun Liu, Alvin Rajko-
mar, Joelle Barral, Christopher Semturs, Alan Karthikesalingam, and Vivek Natarajan. Large
language models encode clinical knowledge. Nature, 620(7972):172–180, Aug 2023.

[47] R. Smits. KDL: Kinematics and Dynamics Library. http://www.orocos.org/kdl.
[48] Chan Hee Song, Jiaman Wu, Clayton Washington, Brian M Sadler, Wei-Lun Chao, and Yu Su.

Llm-planner: Few-shot grounded planning for embodied agents with large language models. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 2998–3009,
2023.

[49] Daniel Tanneberg, Felix Ocker, Stephan Hasler, Joerg Deigmoeller, Anna Belardinelli, Chao
Wang, Heiko Wersing, Bernhard Sendhoff, and Michael Gienger. To help or not to help:
Llm-based attentive support for human-robot group interactions, 2024.

[50] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-
thée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez,
Armand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models, 2023.

[51] Trieu H. Trinh, Yuhuai Wu, Quoc V. Le, He He, and Thang Luong. Solving olympiad geometry
without human demonstrations. Nature, 625(7995):476–482, Jan 2024.

[52] Rasul Tutunov, Antoine Grosnit, Juliusz Ziomek, Jun Wang, and Haitham Bou-Ammar. Why
can large language models generate correct chain-of-thoughts? 2023.

[53] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[54] Yuhui Wan, Jingcheng Sun, Christopher Peers, Joseph Humphreys, Dimitrios Kanoulas, and
Chengxu Zhou. Performance and usability evaluation scheme for mobile manipulator teleopera-
tion. IEEE Transactions on Human-Machine Systems, 2023.

[55] Peng Wang, Mattia Robbiani, and Zhihao Guo. Llm granularity for on-the-fly robot control,
2024.

[56] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. 2022.

[57] Yunhao Yang, Jean-Raphael Gaglione, Cyrus Neary, et al. Large language models for verifiable
sequential decision-making in autonomous systems. In 2nd Workshop on Language and Robot
Learning: Language as Grounding, 2023.

[58] Takuma Yoneda, Jiading Fang, Peng Li, Huanyu Zhang, Tianchong Jiang, Shengjie Lin, Ben
Picker, David Yunis, Hongyuan Mei, and Matthew R. Walter. Statler: State-maintaining
language models for embodied reasoning, 2023.

[59] Andy Zeng, Maria Attarian, Brian Ichter, Krzysztof Choromanski, Adrian Wong, Stefan Welker,
Federico Tombari, Aveek Purohit, Michael Ryoo, Vikas Sindhwani, Johnny Lee, Vincent
Vanhoucke, and Pete Florence. Socratic models: Composing zero-shot multimodal reasoning
with language, 2022.

26

http://www.orocos.org/kdl

	Introduction
	Problem formulation
	The ROS-LLM Framework
	Atomic action library
	Environment observation
	Human non-expert interface
	Prompt generation
	Behavior representation
	Updating the atomic action library via imitation learning

	Experiments
	Experiments setup
	Long-horizon tasks
	Policy correction via human feedback
	Updating the action library with imitation learning
	Adapting to a changing environment and continual learning
	Remote supervisory control

	Discussion
	Performance observations in long-horizon tasks
	Sensitive prompt
	Confusing example
	Robust long-term planning

	Enhancing policy correction via human feedback
	Feedback implementation

	Usability for remote supervisory control
	Stability of LLM
	Limitations of the experiment

	Related work
	Action composition from language
	Incorporating human feedback
	Utilizing open-source models
	Experiment on real robots

	Use cases
	LEJU Robotics Humanoid Kitchen Demonstration
	Robotics Air Hockey Challenge

	Conclusions
	Overview
	Limitations
	Future work

